skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Landau, Luane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sohail, Mashaal (Ed.)
    Abstract Genes within the secretory calcium-binding phosphoprotein locus diversified along with the formation of a calcified skeleton in vertebrates, the emergence of tooth enamel in fish, and the introduction of lactation in mammals, at each stage marking major transitions in life history. The secretory calcium-binding phosphoprotein (SCPP) locus also harbors genes expressed primarily and abundantly in the saliva of humans. Here, we explored the phylogeny and evolution of the saliva-related SCPP genes by harnessing available genomic and transcriptomic resources. We observe extensive diversification of SCPP genes within mammals, driven by gene duplications and losses, with the most pronounced changes occurring in the SCPP genes that are expressed in salivary glands. When comparing rodent and human SCPP genes, we concluded that regulatory shifts and gene turnover events likely facilitated the accelerated gain of salivary gland expression. In primate genomes, we found more recent duplication events that affected genes coding for proteins secreted in saliva. Several saliva-related SCPP genes in the primate lineage show signatures of positive selection, while the other genes in the SCPP locus remain conserved. Our results position saliva-related SCPP genes as highly malleable to evolutionary innovation. Variations shaped by dietary and pathogenic pressures likely influenced the functional properties of saliva proteins, impacting metabolic and immune-related traits in oral health among primates, including humans. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026